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1. Objective 

This research effort sought to develop architectures for millimeter-wave (MMW) imaging 
systems that use novel MMW optical designs and advanced MMW detector arrays.  The 
objective was to design and demonstrate these architectures for compact MMW imaging 
systems.  The work focused on techniques that are newly applied to this frequency band to create 
optical designs that insure small size and weight without compromising imaging performance. 

2. Approach 

The program has involved the modeling, fabrication, and testing of improved optical elements 
for MMW imaging systems.  Promising optical designs included those that were capable of 
reducing the volume and weight of existing MMW optics without sacrificing performance.  A 
goal of the effort has been to develop these optics for an existing U.S. Army Research 
Laboratory (ARL) MMW imager.  This imager uses two lenses to focus energy onto a focal 
plane array.  These lenses are made of the plastic Rexolite™, are several inches thick, and weigh 
about 9 lb each.  The reason that these lenses are so large is because the f-number of the optical 
system is about 1.5.  This is done to minimize the depth (volume) of the imager.  Two lenses are 
needed to correct aberrations caused by having a detector array that is 2/3 the diameter of the 
objective lens.  These geometric constraints cannot be changed, because they are fixed by the 
3-mm wavelength and the sensor size limits of Army platforms.  Therefore, this Director’s 
Research Initiative (DRI) program has pursued methods of reducing lens thickness by modeling 
and measuring anti-reflection (AR) surfaces in both Rexolite and higher dielectric constant 
materials. 

The concept of increasing the dielectric constant to reduce lens thickness is straight forward.  
The problem is that more radio frequency (RF) energy is lost due to surface reflections and 
absorption.  In this effort, we first addressed the issue of surface reflections.  AR coatings are 
often applied to the surface of passive components, such as lenses, to suppress Fresnel reflections 
and, as a consequence, collect more energy in the desired waveband.  The most common method 
for implementing broadband AR surfaces is to coat the surface with multiple layers of thin films.  
Various optimization algorithms are used to determine exact values for the number of layers, 
dielectric constants of the films, and their respective thicknesses such that the coating produces 
the least amount of reflected energy over the desired spectral band.  In general, as the number of 
layers in the coating increases, the antireflective behavior improves.  Unfortunately, 
implementing this same approach at millimeter wavelengths can be challenging since finding 
materials with the desired dielectric constants is difficult.  An alternative method, originally 
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developed for designing AR surfaces in visible and infrared applications, uses a multi-level sub-
wavelength grating fabricated directly on the surface of a dielectric (1–3).  This technique was 
biologically inspired by the sub-wavelength surface pattern on the cornea of the common insects 
including many moths and many butterflies.  Consequently, manmade AR surfaces of this type 
are often called “moth-eye” surfaces.  Similar to the conventional thin film AR coatings, the 
performance of moth-eye AR surfaces improves as the number of levels increases.  
Unfortunately, most multi-level designs of conventional moth-eye AR surfaces result in very thin 
needle-like structures protruding from the surface of a dielectric (figure 1).  These structures can 
be difficult to fabricate and often lack the mechanical rigidity required for some applications.  In 
our work, we pursued an alternative approach we call an inverse moth-eye surface, which can be 
significantly easier to fabricate and more mechanically robust while still providing good 
broadband AR behavior.  This new structure, illustrated in figure 2a, is formed by drilling multi-
level sub-wavelength holes of various diameters into a non-absorptive substrate.   

 

Figure 1.  Illustration of a conventional moth-eye AR surface. 
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Figure 2. The multi-level, inverse moth-eye,  
sub-wavelength grating shown in 
 (a) is approximated by an antireflective 
 interference filter shown in (b).  The equal  
ripple antireflective coating (ERAR) algorithm  
was used to determine the effective properties  
and thickness of each layer. 

An initial design of an inverse moth-eye structure can be performed directly by mapping the 
“effective” properties of the sub-wavelength structure to the dielectric properties of a multi-
layered dielectric stack.  This makes intuitive sense given that the discretely varying hole 
diameters in the inverse moth-eye surface produce layers of different indices of refraction. The 
first step was to employ conventional AR coating design algorithms to construct an interference 
filter (figure 2b).  While there are a large number of good algorithms for designing antireflective 
interference filters, we chose to implement the ERAR algorithm originally described by Collin 
(4–7).  In Collin’s method each layer of a multilayered dielectric stack is designed to be of 
quarter wavelength phase thickness at the center frequency, fo, of the band of interest (i.e., 
(fo)=90°). The next step was to construct a multi-layered sub-wavelength grating in which each 
layer had the same thickness and “effective” refractive indices as the multi-layered design found 
via Collin’s method.  We then assumed that when single level sub-wavelength gratings are 
stacked to produce a multi-level structure the effective properties of the stacked levels could be 
approximated by the effective properties of each single layer.  We fully acknowledge that in a 
multi-level grating the effective properties will depend on the upper and lower boundary 
conditions of each level in addition to being frequency dependent.  However, as illustrated later 
by examples, this direct design method did provide reasonably good results.  Most often the 
grating designs generated by this direct method provided an excellent starting point for the next 
step.  An optimization algorithm, based on a direct pattern search, integrated with a rigorous 
electromagnetic model (rigorous coupled wave (RCW) algorithm) was then applied to form the 
final grating geometry.  The objective function we chose to minimize was simply the sum of  
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squared reflection coefficients, r, at a discrete number of frequencies within the band of interest, 
fi, and a discrete number of angles of incidence, j, as given by equation 1.  This gave very good 
results, as will be shown in section 3. 
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3. Results 

An inverse moth-eye AR surface was designed in Rexolite to reflect a minimum amount of 
energy within the Ka-band (27–40 GHz) at normal incidence.  We assumed that the substrate in 
which the AR surface would be formed had a dielectric constant of r=2.56 and was infinitely 
thick (i.e., half-space).  We also used only a two-level grating as depicted in figure 3.  The 
grating period, , was fixed at 3.1 mm but the grating heights, h1 and h2, and hole diameters, d1 
and d2, were assumed variable.  Figure 3 shows the geometrical design results using the direct 
and iterative methods.  It is interesting to note that the direct method does a reasonable good job 
predicting the final iterative design.  In fact, the iteratively refined design did not change any of 
the initial design parameters by more than 10%.  

 

Figure 3.  Inverse moth-eye AR surface machined from Rexolite and designed 
within the Ka-band (27–40 GHz). 
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Figure 4 shows the results of testing and modeling on this surface.  The measurements show a 
15–20 dB average reduction in reflectivity across the 30–40 GHz band compared to the surface 
with no AR treatment.  Not only is the magnitude of the improvement impressive, but so is the 
wide effective bandwidth.  This compelling result demonstrates the ability of the technique to 
significantly reduce surface reflection in MMW imager optical systems.   

Figure 4.  Measured and modeled Rexolite surface normal reflectivity for the Ka-band with and 
without an AR treatment. 

As stated earlier, we also explored how this type of AR grating could be applied to high 
dielectric materials to reduce surface reflections in MMW imaging systems.  An Emerson 
Cuming product called Eccostock HiK, which has a high dielectric constant and low loss, was 
identified as a candidate material.  This material is a plastic that has a dielectric mixed in during 
fabrication to produce the desired electrical properties.  We used a HiK material with a dielectric 
constant of 9 and found that it could be machined with the desired AR grating.  Transmission 
was measured at Ku band and the results are shown in figure 5.  A dramatic improvement in 
transmission is seen with the AR surface. 
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Figure 5.  Transmission measured and modeled the Eccostock HiK surface normal reflectivity for the Ka-band 
with and without an AR treatment. 

4. Conclusions 

We have modeled, fabricated, and measured AR surfaces for MMW imaging applications based 
on gratings machined in Rexolite and the HiK material.  The grating geometry was designed 
using a direct approach based on Collin’s optical AR method and then optimized with an 
iterative electromagnetic model.  Reflection and transmission were measured for the materials 
with a 15-dB reduction in surface reflections seen in Rexolite and better than 90% transmission 
in the HiK material.  These results give us reason to believe that properly treated high dielectric 
materials have the potential to significantly reduce the volume and weight of MMW optical 
systems without degrading performance. 
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6. Transitions 

The following has been submitted to the IEEE Antennas and Propagation conference:   

“Design of Transparent Dielectric Windows at RF Frequencies Using Moth-Eye Anti-reflective 
Surfaces,” M. S. Mirotznik, B. Good, K. Barry, D. Wikner, J. N. Mait, and P. Ransom. 
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